Relations and Functions

Relation :

If A and B are two non-empty sets, then a relation R from A to B is a subset of A x B.

If $R \subseteq A$ x B and (a, b) \in R, then we say that a is related to b by the relation R, written as aRb.

 Let R be a relation from a set A to set B. Then, set of all first components or coordinates of the ordered pairs belonging to R is called : the domain of R, while the set of all second components or coordinates = of the ordered pairs belonging to R is called the range of R.

Thus, domain of R = {a : (a , b) \in R} and range of R = {b : (a, b) \in R}

Inverse Relation

If A and B are two non-empty sets and R be a relation from A to B, such that $R = \{(a, b) : a$

 \in A, b \in B}, then the inverse of R, denoted by R⁻¹, i a relation from B to A and is defined by

 $R^{-1} = \{(b, a) : (a, b) \in R\}$

Equivalence Classes of an Equivalence Relation

Let R be equivalence relation in A $(\neq \Phi)$. Let a \in A.

Then, the equivalence class of a denoted by [a] or {a} is defined as the set of all those points of A which are related to a under the relation R.

Composition of Relation

Let R and S be two relations from sets A to B and B to C respectively, then we can define relation SoR from A to C such that $(a, c) \in$ So R \Leftrightarrow \exists b \in B such that $(a, b) \in$ R and $(b, c) \in$ S.

This relation SoR is called the composition of R and S.

(i) $RoS \neq SoR$

(ii) $(SoR)^{-1} = R^{-1}oS^{-1}$ known as **reversal rule.**

Congruence Modulo m

Let m be an arbitrary but fixed integer. Two integers a and b are said to be congruence modulo m, if a – b is divisible by m and we write $a \equiv b \pmod{m}$.

i.e., $a \equiv b \pmod{m} \Leftrightarrow a - b$ is divisible by m.

Important Results on Relation

- If R and S are two equivalence relations on a set A, then R ∩ S is also on 'equivalence relation on A.
- The union of two equivalence relations on a set is not necessarily an equivalence relation on the set.
- If R is an equivalence relation on a set A, then R^{-1} is also an equivalence relation on A.
- If a set A has n elements, then number of reflexive relations from A to A is 2^{n^2-2} \boxtimes Let A and B be two non-empty finite sets consisting of m and n elements, respectively. Then, A x B consists of mn ordered pairs. So, total number of relations from A to B is 2 nm.

Properties

- Generally binary operations are represented by the symbols $*$, $*$, ... etc., instead of letters figure etc.
- \cdot Addition is a binary operation on each one of the sets N, Z, Q, R and C of natural numbers, integers, rationals, real and complex numbers, respectively. While addition on the set S of all irrationals is not a binary operation.
- Multiplication is a binary operation on each one of the sets N, Z, Q, R and C of natural numbers, integers, rationals, real and complex numbers, respectively. While multiplication on the set S of all irrationals is not a binary operation.
- Subtraction is a binary operation on each one of the sets Z , Q, R and C of integers, rationals, real and complex numbers, respectively. While subtraction on the set of natural numbers is not a binary operation.
- \cdot Let S be a non-empty set and P(S) be its power set. Then, the union and intersection on P(S) is a binary operation.
- Division is not a binary operation on any of the sets N, Z, Q, R and C. However, it is not a binary operation on the sets of all non-zero rational (real or complex) numbers.

Exponential operation (a, b) \rightarrow a^b is a binary operation on set N of natural numbers while it is not a binary operation on set Z of integers.

Types of Binary Operations

(i) Associative Law A binary operation * on a non-empty set S is said to be associative, if $(a * b) * c = a * (b * c)$, $\forall a, b, c \in S$.

Let R be the set of real numbers, then addition and multiplication on R satisfies the associative law.

(ii) Commutative Law A binary operation * on a non-empty set S is said to be

commutative, if $a * b = b * a$, $\forall a, b \in S$.

Addition and multiplication are commutative binary operations on Z but subtraction not a commutative binary operation, since

$2 - 3 \neq 3 - 2$.

Union and intersection are commutative binary operations on the power P(S) of all subsets of set S. But difference of sets is not a commutative binary operation on P(S).

(iii) Distributive Law Let * and o be two binary operations on a non-empty sets. We say that * is distributed over o., if

 $a * (b \circ c) = (a * b) \circ (a * c), \forall a, b, c \in S$ also called (left distribution) and (b $\circ c$) $* a = (b * a)$ o (c * a), ∀ a, b, c ∈ S also called (right distribution).

Let R be the set of all real numbers, then multiplication distributes addition on R.

Since, $a.(b + c) = a.b + a.c, \forall a, b, c \in R$.

(iv) Identity Element Let * be a binary operation on a non-empty set S. An element e a S,

if it exist such that a $* e = e * a = a$, $\forall a \in S$. is called an identity elements of S, with

respect to *.

For addition on R, zero is the identity elements in R.

Since, $a + 0 = 0 + a = a$, ∀ $a \in R$

For multiplication on R, 1 is the identity element in R.

Since, $a \times 1 = 1 \times a = a, \forall a \in R$

Let P (S) be the power set of a non-empty set S. Then, Φ is the identity element for union on P

(S) as

 $A \cup \Phi = \Phi \cup A = A, \forall A \in P(S)$

Also, S is the identity element for intersection on P(S).

Since, $A \cap S = A \cap S = A$, $\forall A \in P(S)$.

For addition on N the identity element does not exist. But for multiplication on N the idenitity element is 1.

(v) Inverse of an Element Let * be a binary operation on a non-empty set 'S' and let 'e' be the identity element.

Let a ∈ S. we say that a⁻¹ is invertible, if there exists an element b ∈ S such that a * b = b * a $= e$

Also, in this case, b is called the inverse of a and we write, $a^{-1} = b$

Addition on N has no identity element and accordingly N has no invertible element.

Multiplication on N has 1 as the identity element and no element other than 1 is invertible.

Let S be a finite set containing n elements. Then, the total number of binary operations on S in nn2

Let S be a finite set containing n elements. Then, the total number of commutative binary operation on S is $n \ln(n+1)/2$.